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Abstract

Code cloning can seriously affect software quality. Code clones are various fragments

of syntactically or semantically equivalent code. Some authors argue that code clones

have a negative impact on maintainability and understandability, since clones propa-

gate defects and make it mandatory to pay attention to several copies. However,

other authors believe clones are not necessarily bad, since self‐admitted clones favor

system stability and allow developers to move projects forward. Although some root

causes and effects of cloning have been widely studied, there is not much relevant

work analyzing how certain projects context factors impact on code cloning. This

work presents an empirical validation of six open source projects by considering

certain factors from Git repositories measured throughout a total of 70 releases for

the 6 systems. The factors analyzed were the number of commits and committers

per release, the average size of the commits and the size of the system in each

release. The main conclusion obtained from the study is that, while the number of

commits and committers and the system size do not significantly affect cloning, larger

commits lead to a higher cloning ratio. These insights contribute to predicting and

preventing code cloning, thus enabling a software quality improvement.
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1 | INTRODUCTION

The quality of code, and that of software in general, has been studied extensively, since it is recognized to be very significant as regards achieving

competitiveness in the software industry.1-3 One key factor that affects code quality is code cloning.4,5 Code clones are two fragments of source

code that are syntactically or semantically identical to each other.6 According to Saini et al,7 it is possible to identify four different types of cloning

concerning relations between two code fragments and based on the nature of the similarity in their text or meaning.

• Type 1 (Exact clones): Two code fragments are exact copies of each other. This does not consider whitespaces, blanks, and comments.

• Type 2 (Renamed): Two code fragments are equal, with the exception of the names of variables, types, literals, and functions. This means that

the abstract syntax tree is the same, regardless of the names of the code elements.

• Type 3 (Gapped clones): Two copied code fragments are similar, but modifications have been made to them, such as adding or removing state-

ments, or the use of different identifiers, literals, types, whitespaces, layouts, and comments.

• Type 4 (Semantic clones): Two code fragments are semantically similar, regardless of their syntactic similarity.
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According to Patil et al,8 code cloning typically occurs as a consequence of reuse and programming approaches. The reuse approach is the simple

activity of reusing by means of copy/paste, design, functionalities or logic, and may sometimes also occur because of common language con-

structs. The programming approach, meanwhile, comprises the accidental merging of two similar systems, system development with a generative

programming approach, and an intentional delay in restructuring, ie, self‐admitted technical debt.9

In the case of the copy/paste and reusing strategies, the addition of code clones can reduce the time and effort required by software devel-

opers at the outset, when these clones are introduced into the code base. If code clones are introduced afterwards, during system evolution, they

can seriously affect maintainability, and clones specifically have a direct impact on modifiability/changeability and readability10:

• Code clones, and particularly those of a copy‐paste nature, affect software quality, since they make it more difficult to maintain, update, or

otherwise change the program. When an error is detected in one of the clones, the developer must find all the other copies and make parallel

changes in order to be consistent and prevent bugs that degrade code quality.

• Code clones also harm software quality because they can make the understanding of a system more difficult. For example, the crucial differ-

ence between two nearly identical copies may be hidden by their overwhelming similarity.

Despite the fact that the impact of code cloning on software quality is broadly recognized by the research community, there is a long‐standing

debate regarding whether clones are really harmful or beneficial. Alternative approaches argue that cloned code does not necessarily impact on

software quality in a negative manner and that, for example, code with a higher cloning ratio is more stable than non‐cloned code.11 The assump-

tion of some sort of technical debt similarly sometimes leads to the admittance of certain code clones; this is not necessarily bad if developers

know how to pay this debt back, thus enabling projects to move forward.12 These two controversial viewpoints are important, since the results

of code cloning studies provided in literature could be analyzed and interpreted in different ways.

The relevance of code cloning and its impact on software quality had led to the emergence of an intensive research effort on this topic

during last two decades. Despite this effort, few works analyze factors that may lead to a greater cloning ratio and these studies, therefore,

draw certain conclusion regarding how code cloning may be forecasted and prevented. For example, Harder13 states that multiple distributed

developers with certain communication deficiencies (such as those that may occur in some open source projects) can affect the propagation of

code cloning.

As occurs in the aforementioned work, the goal of this paper is to analyze (through the use of an empirical study) how some factors in the

development project context affect code cloning. This study specifically attempts to provide answers to the following research questions:

• How does the development effort in project releasing affect the evolution of code cloning?

• How does the size of commits in project releasing affect the evolution of code cloning?

• How does the size of the system affect the evolution of code cloning?

The main contribution of this paper is a case study conducted with six open source systems (OSSs) retrieved from GitHub, which analyzes

the evolution of the factors related to the questions above as regards the code cloning fluctuation throughout the full history of 70

releases. After analyzing the results of the empirical validation, we discovered the factor that affects cloning to the greatest extent is

the size of the commits. Additionally, this insight is tried to be explained through a qualitative research. The main implication for researchers

and practitioners is that the empirical evidence provided by this study can be used to help predict and prevent code cloning in other

projects.

The remainder of this paper is organized as follows: Section 2 presents work related to this research. Section 3 briefly introduces the

mixed research method. Section 4 presents the design and planning of the case study according to the guidelines proposed by Runeson.14

Section 5 shows the experimental results obtained after conducting the case study on six open source projects and its quantitative analysis.

Section 6 presents the qualitative analysis related to the quantitative analysis' results. Finally, Section 7 sets out our conclusions and directions

for future work.
2 | RELATED WORK

Code cloning is a wide area of research, and many works dealing with this issue have appeared in literature for at least the last two decades. These

works can be classified in at least four lines, the first of which concerns studies that analyze the effect of code cloning on several quality code

features, maintainability, or maintenance effort and cost. The second concerns how to detect different kinds of clones by proposing different tech-

niques and tools. Having detected clones, the third research line concerns how to refactor code in order to reduce cloning, or at least manage code

clones and consequently limit their harmful effects. Despite such a stunning research effort, comparatively fewer works analyze factors that can

lead to a higher number of clones and, therefore, draw conclusion regarding how to predict and prevent code clones by dealing with these factors.

Most of the recent key works in these research lines are presented in the following subsections.
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2.1 | Clone effects

Mondal et al4 provide an empirical study on the impacts of clones on software maintenance. This study deals with the unclear effects of code

cloning on software maintenance. Some researchers argue that clones have negative impacts on software quality and maintenance, as cloning

increases software maintenance cost. Furthermore, they claim that inconsistent changes to clones may introduce faults during evolution.5 Never-

theless, other researchers argue that cloned code is more stable than non‐cloned code.11

Mondal et al15 also present an empirical study on how bugs are propagated through code cloning in different releases. According to the

study carried out on thousands of commits of four open‐source systems, up to 33% of clone fragments with some bug‐fix changes can prop-

agate bugs.

Similarly to that which occurs in our study, Forbes et al16 searched for code clones in various open source project repositories. In addi-

tion to describing the code clones detected, this work provides DoppelCode, a tool with which to visualize code clones (type 1, type 2, and

type 3) and their local and global impact on code, ie, the amount and similarity of clones found in the same module or in external, dependent

modules.
2.2 | Clone detection

Several approaches and techniques can be employed to detect clones, such as that of Haque et al,17 who propose a generic technique

with which to detect code clones from several input source codes by segmenting the code into a number of sub‐programs, modules,

or functions. This technique can detect type 1 to 4 clones. Mondal et al18 investigate which of the clone fragments detected have

high possibilities of containing bugs in order to prioritize them for refactoring and tracking so as to help minimize future bug‐fixing

tasks. In a previous study, the same authors19 provide a comparative study on the intensity and harmfulness of late propagation in near‐miss

code clones.

Alternatively, Kononenko et al20 analyze the results of clone detection in compiled Java code as regards clones detected in source code.

This study shows that source code and bytecode clone detection can produce significantly different results, especially in the case of large

programs. Tiarks et al21 analyze type‐3 clones detected by means of state‐of‐the‐art tools and investigate how syntactic differences in type‐

3 clones can be used to derive certain semantic abstractions, which can subsequently be used to determine whether the clone candidate

suggested by the tool is a real type‐3 clone from a human's viewpoint.

Although researchers have attempted to detect code clones for decades, some of the proposed approaches fail to scale to the

size of the ever‐growing systems code base. This lack of scalability prevents software developers from readily managing code

clones and their related bugs. As a result, Kim et al22 propose VUDDY, an approach for the scalable detection of vulnerable code

clones. This work achieves a higher scalability by leveraging function‐level granularity and a length‐filtering technique that reduces the number

of signature comparisons. In this respect, Patil et al8 detect duplicate code in efficient manner by using decentralized computing and code

reduction.

The detection of semantic clones (type 4) is the most difficult owing to the challenge of defining and implementing semantic similarity

functions. Priyambadha and Rochimah23 provide a semantic clone detection technique based on program dependence graphs. Similarly,

Sheneamer and Kalita6 consider abstract syntax trees and program dependency graphs. The innovative aspect of this approach is the repre-

sentation of a pair of code fragments as a vector and the use of machine learning algorithms to detect clones.

Saha et al24 develop a clone genealogy extractor and study different dimensions of how clone groups evolve with the evolution of the soft-

ware systems. Like our paper, this work provides an in‐depth empirical study with which to evaluate clone genealogies in evolving OSSs at the

release level.
2.3 | Clone refactoring and tracking

Once code clones have been detected, there are two possible ways in which to deal with them, depending on the particular consideration. If code

clones are considered to be harmful for maintainability, those clones are usually removed by means of code refactoring. If the code cloning impact

is not, however, considered negative, the clones must be tracked and managed appropriately.

On one hand, Tsantalis et al25 propose an approach with which to automatically evaluate whether a pair of clones can be refactored without

causing side effects. This signifies that clones determined as refactorable can be refactored without causing any compile errors or test failures.

Chen et al26 present a technique that can be used to manage clone refactoring by matching some refactoring pattern templates with the code

base. This technique makes it possible to summarize the refactoring changes of clones and detect the anomalous clone instances that are not con-

sistently refactored.

On the other hand, Duala‐Ekoko and Robillard27 propose a technique with which to track clones in evolving software, which trusts in the con-

cept of abstract clone region descriptors. This technique considers clone regions within methods in a way that is independent from the exact text

of the clone region or its location in a file.
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2.4 | Clone prediction and prevention

Recent studies on the evolution of code clones show that only some of the code clones change consistently during the evolution of the system.

Wang et al28 analyze how to accurately predict whether a code clone will undergo consistent changes. The work, therefore, provides useful rec-

ommendations to developers on leveraging the convenience of some code cloning operations while avoiding other code cloning operations in

order to reduce a future consistency maintenance effort. A similar approach based on Bayesian networks is proposed by Zhang et al29 and predicts

clone consistency requirement at the time when changes have been made to a clone group.

Other studies use clone genealogy to predict fault propagation. Clone genealogy is the set of states and changes undergone by clone

fragments over time that form an evolution history (owing to, eg, a changed clone fragment being left in an inconsistent state). For example,30

examine clone genealogies to identify the fault‐prone patterns of states and changes, thus enabling that faults to be predicted. Unlike

our study, the intention of this research was to explore factors that are correlated with the fault‐proneness of code clones rather than

cloning itself.

Zibran et al31 present a study on the evolution of near‐miss clones at release level in medium to large open source software systems. The

work investigates the evolution of both exact and near‐miss clones and forecasts the number of clones in future releases of the software systems.

Like our paper, the study analyses the evolution of code clones and their relationships with different factors, such as the programming language or

paradigm and the program size.

Bladel et al32 conducted a similar large‐scale empirical study with open‐source Java projects to investigate how the number of clones changes

throughout software evolution, along with the tendency of individual developers to introduce clones. Although this study analyzes the fluctuation

in cloning, it does not provide an in‐depth analysis of the correlation with factors that can affect cloning.

Similarly to that which occurs in our work, Goon et al33 analyze the code clone ratios throughout the entire development lifetime of open‐

source projects in order to comprehend code clone growth in software as regards development and potential developer habits which could affect

the growth.

Despite all the aforementioned efforts made in these research lines, there is almost no research concerning the prevention of code cloning.

This is because both developers and researchers believe that code cloning is inevitable as a direct consequence of human developer faults.34 This

is a consequence of copy‐paste (because it is easier than generating code manually), in addition to the ignorance regarding the existence of similar

source code pieces in huge unmanageable information systems that could be reused.

In order to prevent or limit code cloning, the first step should be to determine factors that affect code cloning in a development project. Our

study investigates the code cloning relationship of some hypothesized factors concerning development teams and the nature of delivery by con-

centrating on the releasing history of various open source projects.

With regard to our study and how it relates to the four research lines, in the case of clone effects (first line), this study does not inves-

tigate side effects as regards considering cloning to be a root cause, but rather studies factors that contribute to higher cloning. In the case of

the second and third research lines, this study does not attempt to provide innovative methods with which to detect or deal with code clones,

but rather focuses on the prediction and prevention of code cloning (fourth line). Although the relationships among several factors concerning

cloning have been widely studied in order to predict and avoid cloning, the novelty of this paper lies in the analysis of factors related to the

nature of development projects, such as the number of developers and their participation, the average size of commits, and the total size of

the system.
3 | RESEARCH METHOD

This research has been conducted following a mixed method, which combines quantitative and qualitative research methods. Mixed

methods “can help develop rich insights into various phenomena of interest that cannot be fully understood using only a quantitative or a qualitative

method”.35 In mixed methods research, researchers employ both quantitative and qualitative data because they attempt to provide the best

understanding of a research problem.36 Specifically, our research method considers one quantitative method and one qualitative approach:

• Quantitative research method: It consists of a multi‐case study with several analysis units extracted from the analysis of six systems through-

out all their releasing history. Although many authors consider case studies as a qualitative research method, we focus on the quantitative

analysis of the data collected.

• Qualitative research method: It is a qualitative description of the phenomena surrounding some results previously obtained in the case study.

It can be understood as grounded theory method,37 in which researchers attempt to derive a general, abstract theory of a process, action, or

interaction grounded in the views of cases under study. The process of qualitative research is largely inductive while the quantitative is more

deductive.

The design of mixed research methods can be categorized in four major types36: triangulation, embedded, explanatory, and exploratory. In this

research, we follow the explanatory approach since we use qualitative data to help explain or elaborate quantitative results.
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The quantitative research is disseminated in Sections 4 and 6, presenting the design and planning of the case study, and then the quantitative

data analysis. The qualitative research is then presented in Section 7.
4 | CASE STUDY DESIGN AND PLANNING

This section presents a detailed case study of six OSSs to which the research introduced is applied. The case study was conducted according

to the method with which to design, conduct, and report case studies proposed by Runeson et al.14 The following subsections show the case

study design and planning details, according to the items proposed in the aforementioned method: rationale and objective of the study,

cases and units of analysis, theoretical framework, research questions, propositions and hypotheses, concepts and measures, data collection

methods, data analysis methods, case selection, selection of data, case study protocol and data storage, quality control and assurance,

and ethical considerations. In Section 6 we then go on to address the data analysis and interpretation, along with evaluating the validity

of this work.
4.1 | Rationale and objective of the study

The rationale of the study is the limited published research concerning the development context, such as committing, releasing, and the evolution

of the size of open source projects, which may affect the evolution of code cloning. The primary motivation for the study was particularly, from a

practitioners' point of view, not to describe and create a theory or to provide an in‐depth understanding of problems. The main rationale origi-

nated, rather, from its projected utility to predict and prevent code cloning in software development projects.

Keeping the aforementioned rationale for the case study in mind, the objective of the study is to determine how code cloning fluctuation in

different releases in open source development projects is affected by some specific properties in the project context. The long‐term expectation of

the research is to improve the prediction and, therefore, the prevention of cloning. This objective is refined into a set of research questions, which

are answered by means of the collection and analysis of the case study data presented in the following sections.
4.2 | Cases and units of analysis

The study was designed as a holistic multi‐case study38 because it focuses on six open source development projects. It then analyzes the corre-

lation among the factors in all the different releases in each case. The analysis unit and, therefore, the independent variable is each code base on

each different release branch. A release branch is simply a branch in the version control system, on which the code destined for this release can be

isolated from mainline development.39 The study consequently first considers the released version of the software product used to measure

necessary code metrics (eg, LoC, lines of code) and second the respective release branch in order to obtain the version control system metrics

(eg, number of commits).
4.3 | Theoretical framework

The theoretical framework of the study consists of the related work presented in Section 2, which shows other research analyzing the effects of

cloning, detection, refactoring, and handling, along with the evolution of cloning during the system lifecycle so as to predict and prevent it. The

limited theoretical development in the area of predicting and preventing code cloning signifies that it is difficult to apply theoretical generalization.

However, the earlier studies influenced the design of this study.
4.4 | Research questions

RQ1. How does the development effort in project releasing affect the evolution of code cloning?

RQ2. How does the size of commits in project releasing affect the evolution of code cloning?

RQ3. How does the size of the system affect the evolution of code cloning?

The study defines three research questions: RQ1 to RQ3. RQ1 and RQ2 are based on the main hypothesis that the nature of commits can

affect code cloning. Our initial theory is that the more commits a release branch has, the more code cloning is introduced. The other research

hypothesis concerns RQ3, which attempts to explain the relationship between system size and the code cloning generated.
4.5 | Propositions and hypotheses

All the research questions defined concern the evolution of certain related measures during the project releasing lifecycle, and how these factors

may have an impact on the fluctuation of code cloning. The hypotheses formulated as regards the research questions, therefore, consist of three

pairs of null and alternative hypotheses.
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H0RQ1
: There is no significant difference in the cloning ratio for different numbers of commits and committers.

H1RQ1 : ¬H0RQ1

With regard to the first pair for RQ1, the proposition is that a higher number of commits and committers in a release branch produces a

greater cloning ratio. This proposition is based on the idea that the more developers there are contributing to the same release branch, the less

communication there is between team members, thus making reuse difficult and leading to more code clones.13 Although Harder's study analyzes

how many developers are involved in the creation and maintenance of clones, RQ1 in our study extends this analysis to the numbers of commits

and committers, which are two factors that do not necessarily have a linear relationship.

H0RQ2
: There is no significant difference in the cloning ratio for different sizes of commits (ratio of additions and deletions per commit).

H1RQ2
: ¬H0RQ2

In the second pair of hypotheses, for RQ2, the proposition is that the greater the average number of commits, the higher the number of clones

produced. In a similar way to that which occurs in the previous proposition, code reuse becomes difficult because a higher number of conflicts may

appear, signifying that the merging solutions conducted in the control version system are more difficult.

H0RQ3
: There is no significant difference in the cloning ratio for larger code bases.

H1RQ3
: ¬H0RQ3

The last pair of hypotheses, for RQ3, assumes that the more lines of codes, the greater the code cloning derived. The meaning of this prop-

osition is that larger systems make it difficult to handle clones, hence more clones are produced.

4.6 | Concepts and measures

In order to answer the research questions, and keeping the aforementioned hypotheses in mind, several measures are considered, which are

classified in five concepts. Table 1 summarizes all the variables by indicating for each: (1) the research question in which it is used (RQ1 to

RQ3); (2) the concept to which the variable belongs (releasing, cloning, development effort, commit size, or system size); (3) the name of the

variable; (4) whether the variable is dependent or independent; (5) the scale type (ie, interval, ratio, nominal, or ordinal) and, finally, (6) the range

definition for all the possible values of the variable.

• Releasing. This concept refers to the storyline version of an open source development project.
TABL

RQ

RQ*

RQ1

RQ2

RQ3
‐ Release branch is the independent variable representing the unit of analysis in the embedded case study. This represents the open source

project status when a concrete version was released.
• Cloning. This concept refers to the code clones detected in the codebase of each release branch.
‐ Cloning Ratio(10) is the proportion of lines of source code belonging to one of the clones detected (with at least 10 statements) as regards

the total number of lines of source code in the systems that were analyzed.

‐ Cloning Ratio (20) is the same measure, but considering a minimum of 20 statements during clone detection. It is, therefore, always the

case that Clone Ratio (20) ≤ Clone Ratio (10).
E 1 Concept and measure definitions

Concept Measure Type Scale Type Range or Definition

Releasing Release branch Independent Nominal Release branch number X.Y.Z different
for every system under study

Cloning Cloning ratio (10) Dependent Ratio x ∈R, x∈ [0, 100]
Cloning ratio (20) Dependent Ratio x ∈R, x∈ [0, 100]
Cloning ratio growth (10) Dependent Interval x ∈R
Cloning ratio growth (20) Dependent Interval x ∈R

Development effort #commits Dependent Interval x ∈ N

#committers Dependent Interval x ∈ N

Commit size Commit size ratio Dependent Interval x ∈R
Commit size category Dependent Ordinal 1 = small, 2 = medium, 3 = large,

4 = very‐large

System size LoC Dependent Interval x ∈ N

Analyzed LoC Dependent Interval x ∈ N

Analyzed LoC growth Dependent Interval x ∈ R
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‐ Cloning Ratio Growth (10). Similarly to the cloning ratio, the study uses the difference between the cloning ratio and the previous release

branch. This metric is used to evaluate the percentage of cloning growth on a concrete release branch and is, therefore, computed as the

difference in the current cloning ratio minus the previous cloning ratio and is then divided by the previous cloning ratio. This considers this

metric for cloning types with a minimum of 10 statements.

‐ Cloning Ratio Growth (20) measures the same concept as the previous measure, but by considering a minimum of 20 statements during

clone detection.
• Development effort. This concept attempts to measure the amount of changes in a concrete released version
‐ #Commits is the total number of source code changes registered in the version control system (Git, in this study) for a certain release

branch.

‐ #Committers is the total number of different developers who committed something on a certain release branch.
• Commit size. This concept refers to the size and complexity of the changes made to code by developers on a certain release branch.
‐ Commit Size Ratio is computed as the number of additions or deletions divided by the total number of commits on a certain release branch.

‐ Commit Size Category is computed on the basis of the quartiles of the previous variable. This is an ordinal variable that can take four values

(small, medium, large, and very large).
• System size. This concept refers to the size of the system that is released on every repository branch.
‐ LoC is the total number of lines of source code in the version released from the respective release branch.

‐ Analyzed LoC is the total number of lines of source code that were considered during the clone detection phase. This variable is considered

since some lines of source code may be ignored intentionally because, for example, they can be generated automatically and may, there-

fore, generate many clones. The cloning ratio is computed by considering only the number of lines of source code analyzed.

‐ Analyzed LoC growth considers the increased percentage of LoC regarding the previous release.
4.7 | Data collection methods

In the case study, the data was primarily collected from two alternative data sources. The first data source consisted of the code base for all the

projects that were retrieved from GitHub (an online version control system) together with all the information originating from the version control

repository (eg, numbers of commits, committers, etc.). The second data source was the information regarding code clones, which was generated

after applying a clone detection technique to the code base for each project. Both data sources were then integrated into a common case study

database to be consumed during the data analysis phase.
4.8 | Data analysis methods

This case study combined both qualitative and quantitative data analyses. The technique employed in the qualitative analysis was explanation

building, as depicted by Yin.38 This technique identifies patterns based on cause‐effect relationships and pursues underlying explanations. In this

study, this technique made it possible to identify and explain a relationship between the tendency of the factors being analyzed and the cloning

fluctuation throughout the releasing history. This qualitative analysis technique is based principally on descriptive statistics and some explanatory

charts that relate different variables.

The quantitative analysis was then used in combination with that described above to confirm preliminary insights obtained by means of the

qualitative analysis. The quantitative analysis technique used was the statistical correlation tests and, in particular, the bivariate Pearson correla-

tion test. In statistics, the Pearson correlation coefficient, also referred to as Pearson's r or the bivariate correlation, is a measure of the linear cor-

relation between two variables. This correlation factor has a value of between 1 and −1, where 1 is a total positive linear correlation, 0 is a

nonlinear correlation, and −1 is a total negative (inverse) linear correlation. The correlation results made it possible to determine, with a certain

statistical significance, whether a concrete factor affected code cloning.

Although the Pearson test is able to provide statistical evidence about correlations, it fails to provide information about the magnitude of the

effect of one variable regarding another. The analysis of variance (ANOVA) test was, therefore, also used to check the differences between means

in a cloning ratio. The ANOVA was used in conjunction withTukey's HSD (honest significant difference) test in order to compare all possible pairs

of means. The Tukey test is used in together with an ANOVA (post‐hoc analysis) to find means that are significantly different from each other.
4.9 | Case selection

After designing the case study, it was necessary to select the cases that would be studied. Table 2 shows a summary of the criteria (C1 to C4) used

to select the most appropriate cases. C1 ensured that the project consisted of the development of an OSS which could be freely analyzed and in

which different programmers contributed to the code base. C2 was explicitly defined to guarantee that the codebase was tracked through the use

of a control version system (specifically, Git) and that the study would, therefore, be capable of attaining information on commits and committers.
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Id Criterion for Case Selection

C1 It should be an open source system

C2 It must be available in GitHub

C3 It must have at least five release branches

C4 It must not be smaller than 50 KLoC
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C3 was established to obtain only those projects that followed the release branch strategy to track the evolution of the code base and release

different versions. Release branches allow maintenance to continue in parallel for examples 1.0.x and 1.1.x, and releases can be made indepen-

dently from both lines (while new development work takes place either directly in the main trunk [master branch] or on short‐lived feature

branches that become merged into the main trunk as soon as they are ready).39 This criterion, therefore, established that a minimum number

of five release branches would be necessary to evaluate the aforementioned metrics during the evolution of the branches/releases. Finally, C4

was established so as to discard small systems, since it would not be possible to scale the results obtained results to larger systems, and the result

could, therefore, have been negligible. The limit was established as 50 000 lines of code, and the last release branch was considered in order to

compute this metric.

4.10 | Selection of data

After applying the aforementioned selection criteria, six open source projects from GitHub were selected. Table 3 shows the name, URL under

https://github.com/, the date of the first release, thousands of lines of source code, and the number of release branches (corresponding with

the number of released versions):

• Spring Boot (S1) makes it easy to create stand‐alone, production‐grade Spring‐based applications that developers can run with very little

Spring configuration. Spring is an application framework and the inversion of a control container for the Java platform, thus allowing Spring

boot to create stand‐alone Spring applications; it directly embedsTomcat, Jetty, or Undertow, and there is, therefore, no need to deploy WAR

files; it provides opinionated “starter” POMs with which to simplify Maven configurations; among other features.

• Cassandra (S2) is a free and open‐source distributed NoSQL database management system designed to handle large amounts of data across

many commodity servers, providing high availability with no single point of failure. Cassandra was initially developed by Facebook to power

the Facebook inbox search feature and later became an Apache project.

• Flink (S3) is a stream processing framework developed by the Apache Software Foundation. The core of Apache Flink is a distributed stream-

ing dataflow engine written in Java and Scala. Flink provides a high‐throughput, low‐latency streaming engine in addition to support for event‐

time processing and state management. Flink does not, however, provide its own data storage system, although it provides data source and

sink connectors for systems such as Hadoop, Apache Kafka, HDFS, Apache Cassandra, and Amazon Kinesis, among others.

• Groovy (S4) is an object‐oriented programming language for the Java platform. It is a dynamic language with features such as those of Python,

Ruby, Perl, and Smalltalk. Most valid Java files are also valid Groovy files. Although the two languages are similar, Groovy code can be more

compact, because it does not need all the elements required by Java. Groovy can be used as both a programming language and a scripting

language for the Java Platform, is compiled for Java virtual machine bytecode and interoperates seamlessly with other Java code and libraries.

• Tika (S5) is a toolkit that detects and extracts metadata and text from over a thousand different file types (such as PPT, XLS, and PDF). These

file types can be parsed through the use of a single interface, thus making Tika useful for search engine indexing, content analysis or trans-

lation, among others. The project originated to provide content identification and extraction when crawling, althoughTika later was separated

in order to make it more extensible and usable by content management systems, other Web crawlers, and information retrieval systems.

• Apache Pig (S6) is a platform whose purpose is to analyze large data sets that consist of a high‐level language with which to express data

analysis programs that run on Apache Hadoop. Hadoop is, in turn, a collection of open‐source software utilities that facilitate the use of a
TABLE 3 Cases selected

Id Project URL Since KLoC # Release Branches

S1 Spring boot Spring‐projects/spring‐boot Dec 2013 347 7

S2 Cassandra Apache/cassandra Feb 2011 564 9

S3 Flink Apache/flink Jan 2014 889 11

S4 Groovy Apache/groovy Apr 2009 297 11

S5 Tika Apache/tika May 2010 92 15

S6 Pig Apache/pig Oct 2010 396 17

https://github.com
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network comprising many computers to solve problems involving massive amounts of data and computation. Pig abstracts the programming

from the Java Hadoop idiom into a notation that makes Hadoop programming high level, similar to that of SQL for relational database

management systems. Apache Pig was originally developed at Yahoo Research to provide an ad‐hoc means of creating and executing Hadoop

jobs in very large data sets. It subsequently became an Apache project.
4.11 | Case study protocol and data storage

After designing the case study and selecting the cases, the study was carried out following the steps depicted in Figure 1.

The procedure first focused on analyzing the Git repository (see left branch at the beginning of the process depicted in Figure 1). The Git

repository was, therefore, cloned to enable it to be imported locally, and some Git commands were then executed using the Git bash tool.

• Git shortlog: this summarizes git log output in a format that is suitable for inclusion in release announcements. Each commit is grouped by

author and title. Option ‐n (numbered) obtains the sort output according to the number of commits per author rather than the alphabetical

order of the authors. Option ‐s (summary) suppresses the commit description and provides a commit count summary only. git shortlog ‐sn

branch/1.0x is first executed using this command, followed by git shortlog ‐sn branch/1.1.x ^branch/1.0.x, etc., until every branch has been

dealt with. After performing this command, the number of commits and committers per every release branch are obtained.

• Git diff: this shows changes between commits, commit and working tree, etc. The –shortstat option provides only the last line in the ‐‐stat

format containing the total number of modified files, along with the number of lines added and deleted. Git diff ‐‐shortstat branch/1.0x is first

executed using this command, followed by git diff ‐‐shortstat branch/1.1.x ^branch/1.0.x, etc., until every branch has been dealt with.
IGURE 1 Case study procedure
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After executing the aforementioned commands for each release branch, the textual outputs obtained are dealt with, and all the relevant data

(see definition of variables in subsection 4.6) is added to spreadsheets for future analysis.

The code base is studied and cloning data are extracted in parallel to analyzing the Git repository (see right‐hand branch at the beginning of

the process depicted in Figure 1). First, all released versions (corresponding with every release branch) are downloaded from GitHub, after which

the LoC computing and the code cloning analysis are performed. In this study, the clones were detected by using ConQAT,40 a tool implementing a

technique that is able to detect Type 1 to Type 3 clones.41 The usage of this tool rather than others was because it has good benchmarking recall

values for the detection of Type 2 and Type 3 clones.42

The cloning analysis can be parametrized with the minimal number of statements to consider copies as a clone. For example, a small value like 2

does not make sense, since it means that the copies of two statements are considered as clones. According to many studies, some copies of few

lines of code correspond with common programming language constructs8 or intentionally small clones used to gain code stability.11 The study

presented herein has, therefore, considered thresholds of 10 and 20 so as to take into consideration clones that share more than 10 statements,

in addition to those with more than 20 statements. Please note that clones detected by using a parameter value of 20 are also included in clones

detected using a parameter value of 10. An example of this is available online* and shows the cloning detection report for release branch Pig 0.2

(with a minimum number of 10 statements) that was generated with ConQAT.

Another possible parameter allowed by ConQAT is the exclusion of certain code packages. In this study, packages were excluded through the

use of the following patterns: **/test/**, **/integration‐tests/**, **/generated/**, **/, and **/gen‐java/**. These patterns discard code base

focused on testing, along with code automatically generated with compilers and tools. Only the source supporting system functionality and com-

mitted by programmers is, therefore, considered.

After the aforementioned analysis had been carried out for every release branch, the generated html reports were checked, and relevant data

was collected on spreadsheets (see definition of variables in subsection 4.7).

Since this case study collected a large, complex, diverse body of data, it was important to ensure that this data is stored in a structured manner

in order to ensure ease of retrieval, completeness of data sets, and the ability to share data with co‐researchers, in addition to supporting the

development and maintenance of a chain of evidence. After the Git repository and code cloning had been analyzed, all the data collected on sev-

eral spreadsheets were consequently merged and additionally derived data (cf. subsection 4.7), such as the ratio of added or deleted lines per

commit, were also computed (see Figure 1). All the data that were relevant for the statistical analysis were then collected in SPSS, after which

descriptive statistics, explanatory charts, and correlation tests were attained. Having generated all these artifacts, the analysis and interpretation

of results were eventually conducted (cf. Section 6). The full experimental dataset can be accessed online at http://alarcos.esi.uclm.es/per/

rpdelcastillo/Ex_Cloning.htm.

4.12 | Quality control and assurance

We established three methods with which to ensure that the quality of the case study would be considered during all the stages of the study:

• A draft of the case study design was reviewed by peers external to the empirical study.

• A pilot study was conducted in order to evaluate the case study design. This pilot study consisted of the analysis of a small single case which

was carried out with Shiro, another open source development project in GitHub. All cloning detections tools and data collection were applied

to ensure that all the desired data could be collected.

• During the execution of the case study protocol, the actual progress of the case study was reviewed against the planned progress to deter-

mine whether there were any significant differences. More specifically, an exhaustive review was carried out after concluding the data collec-

tion and storage steps for each of the six OSSs.
5 | QUANTITATIVE DATA ANALYSIS

After the execution of the case study, the values for the defined metrics were collected for 70 release branches throughout the six open source

projects. The data analysis performed to answer each research question is presented in the following sections. In addition to the fact that the most

relevant data collected are shown in the following subsection, the experimental data are available in their entirety online,† t hus hopefully enabling

the research community to this experimental data for future replications or related empirical studies.

5.1 | RQ1. Commits and committers against cloning

The hypothesis for RQ1 is that both the number of commits and committers are correlated with a high amount of cloning. Figure 2 shows the

evolution of cloning for each of the systems studied. Each plot shows the percentage of cloned lines of coder regarding the total number of lines
*https://alarcos.esi.uclm.es/per/rpdelcastillo/ex_cloning/example_cloning/[000007].html

†http://alarcos.esi.uclm.es/per/rpdelcastillo/Ex_Cloning.html

https://alarcos.esi.uclm.es/per/rpdelcastillo/ex_cloning/example_cloning
http://alarcos.esi.uclm.es/per/rpdelcastillo/Ex_Cloning.html


FIGURE 2 Evolution of cloning percentage regarding LoC analyzed
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analyzed. Please note that some patterns were used to ignore test and generated code. Moreover, each plot presents two lines representing the

clones with at least 10 LoC (continuous lines) and longer clones with at least 20 LoC (dashed lines). An important point is that all the plots have a

different scale on their axes. The X‐axis represents all the release branches that depend on each system, while the Y‐axis represents the percent-

age of cloning, and the maximum of this scale depends on the maximum cloning ratio attained for each system.

After analyzing Figure 2, the preliminary insight is that all the systems follow a different trend. For example, systems like Flink and Pig had a

higher cloning at the beginning (around 30%) and then followed a downward trend. The reduction in the cloning ratio may be for two main reason:

(1) code refactoring, which removes many cloned fragments (ie, the numerator of the ratio is lower than before); or (2) several new lines of code

are added to the current release without introducing further clones, signifying that the cloning ratio is reduced (the denominator is higher than

before). The first reason is usually related to intentional actions carried out by the development team. This might, for example be because the

developers realized the existence of the huge cloning ratio and attempted to revert it in the subsequent releases by means of refactoring actions.

The second reason is sometimes related to non‐intentional actions, ie, the new lines of source code were added by chance with a lower cloning

ratio. This could, however, also be owing to the intentional actions of developers who, for example, agreed to avoid the introduction of further

clones in the new parts while no complementary refactoring actions were planned to deal with the existing clones.

Other systems, such as Spring‐boot and Tika, have slightly upward trends and have a low cloning ratio in the first releases (between 0 and 2%).

Finally, the lines for Cassandra and Groovy have peaks but are certainly stable over time (between 5% and 10%). Only Groovy has a significant

increase in the last release as regards the aforementioned stability.

Having analyzed the cloning trends in each system, the question now is whether one of the factors being studied (number of commits and

committers) is the reason for these trends. Figures 3 and 4, respectively present the fluctuations of the commits and committers in each branch

release. Note that the release branches do not have to be produced with the same duration. If we compare these figures with the peaks in Figure 2

, some of these peaks match while most of them do not.

The preliminary insight obtained by comparing the plots can be confirmed by means of the bivariate Pearson correlation test. Table 4 shows

the results of the correlation tests for each system, in addition to considering the release branch entries for all the systems together. The

highlighted cells represent cases in which a correlation exists. The lightly highlighted cells represent a confidence level of 95% whilst those that
FIGURE 3 Evolution of number of commits



FIGURE 4 Evolution of number of committers

TABLE 4 Pearson correlation results for committers and commits when compared with cloning ratio

Committers Commits

System Cloning R. (10) P‐value Cloning R. (20) P‐value Cloning R. (10) P‐value Cloning R. (20) P‐value

Spring‐boot 0.653 0.160 0.653 0.160 0.471 0.345 0.526 0.345

Cassandra −0.738 0.037 −0.922 0.001 −0.228 0.588 0.165 0.697

Flink −0.849 0.002 −0.848 0.002 −0.585 0.076 −0.525 0.119

Groovy −0.380 0.279 −0.160 0.659 0.083 0.819 −0.396 0.257

Tika 0.419 0.135 0.534 0.049 0.233 0.423 0.255 0.378

Pig −0.342 0.195 −0.136 0.616 −0.557 0.025 −0.322 0.223

ALL −0.187 0.138 −0.120 0.120 −0.348 0.005 −0.379 0.002
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are heavily highlighted indicate a confidence level of 99%. These results indicate that only some of the systems (Cassandra, Flink, and Tika) have

any kind of correlation between committers and the cloning ratio. Even more, most of these correlations are negative, signifying that there are

inverse relationships between both variables. Only the cloning ratio (20) presents a positive correlation. With regard to commits, only Pig has a

correlation regarding the cloning ratio in addition to whether all the analysis units are considered together. Anyway, these correlation factors

are negative as well (seeTable 4). Since most of these correlations are negative, it can be stated that the more committers or commits are involved,

the lower the cloning ratio is. Suffice it to say that most of the comparisons do not have sufficient statistical significance. Nevertheless, there are

both positive and negative Pearson correlation coefficients and with a wide variety of values between −1 and 1.

Upon considering these results, H0RQ1 cannot be rejected, which determines that the number of commits or committers have no effect on the

cloning fluctuations during system evolution. The main implication of this research question is aligned with the insights of Goon et al33: every pro-

ject most likely follows its own trends (see Figure 2). On the one hand, the trend noticed by Goon et al,33 in which projects have an initial period of

instability and fluctuations followed by a period of stability, is confirmed. Furthermore, there are other trends in which cloning is under control

(with a minimal fluctuation) but grows slightly over time. These overall trends suggest some general workflow of code clone management.

As occurred with the results provided by Harder,13 this study finds differences in cloning ratios for different numbers of commits and

committers, although a clear positive linear correlation cannot be established.

5.2 | RQ2. Size of commits against cloning

The hypothesis for RQ2 is that there is a correlation between the size of the commits and the cloning ratio. The size of the commits is measured as

the additions and deletions per commit for a concrete release branch. Figure 5 shows the evolution of the commit size ratio per system on each

release branch. On the one hand, some of the peaks in the fluctuation of these plots match with the peaks in the cloning evolution plots shown in

Figure 2. On the other, upon comparing the commit size and the number of commits evolution (see Figures 3 and 5), it will be observed that nei-

ther factor is directly correlated. This makes sense if we consider that the size of the commits depends on the development context. For example,

in the case of the Pig system, it will be noted that there are fewer commits on the first release branches, although the size of these commits is

significantly higher than in the subsequent releases. This could be explained by the fact that there were fewer committers at the beginning,

and the development context basically consisted of the additions of new functionalities from scratch, and the commits were, therefore, made from

time to time without undergoing many merging conflicts. In conclusion, the analysis of the number of commits and the commit size as two inde-

pendent factors that can affect the cloning ratio in a different way would appear to be appropriate.
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The hypothesized correlation between commit size and cloning ratio had to be confirmed by means of the bivariate Pearson correlation test.

Table 5 shows the results for the bivariate Pearson correlation tests for commit size and cloning ratio and cloning growth. The results obtained for

the data segmented by system are not significant (with the exception of the Pig and Tika system, see highlighted cells). However, the correlation

test carried out by considering all analysis subunits for all systems (without data segmentation) provided a positive correlation for the four

variables analyzed with a confidence level of 99%. The growth of cloning is particularly highly correlated with the size of commits with 0.630

(10) and 0.661 (20).

Upon considering these results, H0RQ2 can be rejected, and it is determined that the size of commits affects the cloning fluctuations during

system evolution.

Despite the results obtained through the use of the Pearson correlation test, this test failed to provide statistical evidence regarding what the

magnitude of this effect is. An ANOVA test was, therefore, conducted to check the differences between the means for the cloning ratio. This was

done using the four categories (low, medium, large, very large) for the size of the commit variable, which were computed on the basis of quartiles.

This uses these categories due to the ANOVA test requires an ordinal (category‐based) variable to be used as “factor.” For this reason, a new var-

iable was created by considering these four categories by considering quartiles of the whole distribution of commit sizes. Thus, the commit size

categories can be understood as a mean for knowing the commit size in a relative way for all the releases. Thus, the categories computed in this

study correspond to the following numbers of lines of code.

• Small: LoC < 58

• Medium: 58 ≤ LoC < 124

• Large: 124 ≤ LoC < 250

• Very large: LoC ≥ 250

Table 6 presents the results for the ANOVA test, which shows significant effects for both cloning ratio (10) and cloning ratio (20). These results are

aligned with those obtained in the Pearson test. However, the ANOVA test provides the magnitude of this effect (column R2 inTable 6), signifying

that at least 57.8% (10) and 57.1% (20) of the cloning ratio values can be explained by the size of the commits. Furthermore, it was possible to

discover the differences in cloning ratio for each commit size category by using Tukey's post hoc test (see Table 7). This test showed significance

for almost every pair of sizes (see highlighted cells). However, the most recurrent difference in these comparisons was the “very‐large” size regard-

ing each other. These results can also be graphically checked with the box plot presented in Figure 6.
TABLE 5 Pearson correlation results for commit size regarding cloning ratio

Cloning
R. (10)

P‐
Value

Cloning
R. (20)

P‐
Value

Cloning R.
Growth (10)

P‐
Value

Cloning R.
Growth (20)

P‐
Value

Spring‐boot −0.361 0.483 −0.290 0.577 0.135 0.799 0.277 0.595

Cassandra −0.080 0.851 0.038 0.929 −0.192 0.648 −0.043 0.920

Flink 0.553 0.097 0.443 0.200 0.291 0.415 0.206 0.567

Groovy 0.019 0.958 −0.010 0.977 −0.280 0.434 −0.100 0.783

Tika −0.163 0.579 −0.296 0.304 0.538 0.047 0.170 0.562

Pig 0.476 0.063 0.353 0.180 0.892 0.000 0.916 0.000

ALL 0.431 0.000 0.402 0.001 0.630 0.000 0.661 0.000



TABLE 6 ANOVA test results for cloning ratio considering size of commit category as factor

Types III Sum of Squares R2 F (ANOVA) P‐Value

Cloning ratio (10) 0.247 0.578 27.414 0.000

Cloning ratio (20) 0.092 0.571 26.583 0.000

TABLE 7 Tukey's port hoc test for cloning ratio considering size of commit category

Cloning Size Commit Category Mean Difference Standard Error P‐Value

Cloning ratio (10) Small Medium 0.026 0.019 0.540

Large −0.033 0.019 0.337

Very large −0.137 0.019 0.000

Medium Small −0.026 0.019 0.540

Large −0.059 0.019 0.018

Very large −0.163 0.019 0.000

Large Small 0.033 0.019 0.337

Medium 0.059 0.019 0.018

Very large −0.105 0.019 0.000

Very large Small 0.137 0.019 0.000

Medium 0.163 0.019 0.000

Large 0.105 0.019 0.000

Cloning ratio (20) Small Medium 0.013 0.012 0.706

Large −0.024 0.012 0.194

Very large −0.086 0.012 0.000

Medium Small −0.013 0.012 0.706

Large −0.037 0.012 0.016

Very large −0.099 0.012 0.000

Large Small 0.024 0.012 0.194

Medium 0.037 0.012 0.016

Very large −0.062 0.012 0.000

Very large Small 0.086 0.012 0.000

Medium 0.099 0.012 0.000

Large 0.062 0.012 0.000

FIGURE 6 Box plot for cloning ratio and commit size categories
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5.3 | RQ3. Size of the system against cloning

The hypothesis for RQ3 is that there is a correlation between the size of the system and the cloning ratio. Figure 7 shows the evolution of the

number of LoC, along with the number of LoC analyzed after ignoring testing and generated code. It can be observed that there is a growing

upward trend. This evolution is to be expected, since new functionality is added in each release. However, sometimes there are some stabilization

releases in which LoC is the almost the same, or even decreases, as occurs in release 0.13 of Pig. A common explanation for this is that certain

releases focus on refactoring and improving some quality aspects rather than simply adding new functionality.

The statistical correlation analysis for this research question focuses first on how the LoC analyzed are correlated with the cloning ratio (ie,

absolute values), and second on the growth of the LoC analyzed in comparison to the growth of the cloning ratio on each release branch.

Table 8 shows the bivariate Pearson correlation results for these cases. Upon considering absolute values (see left‐hand side of Table 8), it will

be observed that there are correlations in most of the systems with a confidence level of 99% (see highlighted cells). Surprisingly, there are both

positive and negative correlations. For example, Spring‐boot and Tika (for cloning ratio (10)) have strong positive correlations, ie, 0.962 and 0.789,

respectively.

Flink, Pig, and Cassandra (only in the case of larger clones) simultaneously have a significant negative correlation factor. If the growth values

are analyzed (see right‐hand side of Table 8), then all correlation values are positive, with the exception of Cassandra. However, most of the results

that consider growth variables are not statistically significant.

Upon taking into account the statistically significant results,H0RQ3 can be rejected, and it can be stated that size has some effect on the cloning

evolution. Unfortunately, the direction of the correlation cannot be determined without further empirical validations.

The results obtained can be explained by the existence of different development contexts. The first possible context is that some release iter-

ations are devoted to refactoring or improving certain quality issues in code rather than adding new functionality. The reduction in the cloning

ratio (after it was detected in previous releases) might, therefore, have been defined as one of the goals in a concrete release. As a result, the clon-

ing ratio decreases regardless of the LoC. For example, Flink and Pig have growing downward trends after huge cloning ratios in the first releases

(see Figure 2), signifying that the negative correlation makes sense.

Another alternative development context that may explain the obtained results consists of projects in which cloning is moderately low and

only a slight increase in cloning occurs upon each release (see cloning evolution for Spring‐boot, Groovy, and Tika in Figure 2). Consequently, (1)
FIGURE 7 Evolution of system size and number of lines of code analyzed

TABLE 8 Pearson correlation results for LoC and cloning ratio analyzed

LoC Analyzed LoC Growth Analyzed

Cloning ratio (10) P‐value Cloning ratio (20) P‐value
Cloning ratio
growth (10) P‐value

Cloning ratio
growth (20) P‐value

Spring‐boot 0.962 0.002 0.962 0.002 0.502 0.310 0.346 0.501

Cassandra ‐0.617 0.103 ‐0.874 0.005 ‐0.001 0.998 ‐0.624 0.098

Flink ‐0.869 0.001 ‐0.877 0.001 0.327 0.356 0.356 0.313

Groovy 0.007 0.985 0.545 0.103 0.429 0.216 0.241 0.503

Tika 0.789 0.001 0.490 0.075 0.218 0.454 0.136 0.643

Pig ‐0.903 0.000 ‐0.792 0.000 0.907 0.000 0.932 0.000

ALL 0.391 0.001 0.377 0.002 0.648 0.000 0.641 0.000



16 of 21 PEREZ‐CASTILLO AND PIATTINI
the developers were perhaps not worried about cloning, and it was, therefore, ignored, or (2) the developers were perhaps conscious of the clon-

ing, but its treatment had to be deferred in order to move the project forward (ie, some technical debt was deliberately added). This context, in

which cloning evolution has a growing upward trend, could explain the positive correlation factors.

In all events, the mixture of positive and negative correlations is in line with the long‐standing debate on whether or not clones are beneficial.4
5.4 | Validity evaluation

This section shows the threats to the validity of this case study in order to denote the trustworthiness of the results. According to the scheme

presented in Runeson et al,14 four aspects of the validity and threats to validity can be distinguished: construct validity, internal validity, external

validity, and reliability.
5.4.1 | Construct validity

With regard to the construct validity, the measures proposed were appropriate as regards measuring the variables and answering the research

questions. However, the effect of other factors could be analyzed. For instance, team diversity measured by time zone and the committers' coun-

try, developer expertise, and so forth. These diversity factors were analyzed in.43

Furthermore, another threat must be mentioned. Clone detection was parametrized with two arbitrary values (10 and 20) for the minimum

number of statements of clones. The goal was to analyze different sizes of clones. However, these two arbitrarily fixed values may be rather

relative.

One possible explanation in RQ2 (correlation between commit size and cloning) was that larger commits lead to more severe merging conflicts

in code repositories, and that this in turn leads to higher cloning. Keeping this in mind, the number of merging conflicts may be taken into account

in future studies.

Finally, the study could have considered qualitative aspects related to the evolution of clones across the system releases. This study has not

considered what happens to a given clone from one release to the next. The number of equivalent clones that was reduced or eliminated could,

therefore, also be measured. In order to mitigate this, Section 7 provides a qualitative analysis on the basis of individual clone evolution through all

the different releases.
5.4.2 | Internal validity

There is no large population that makes it possible to obtain statistically representative results. However, a clear trend for the proposed measures

was identifiable in this multi‐case study with 6 systems and 70 subunits of analysis. In the future, the results of these cases will be contrasted with

the results obtained for the same study of other open source projects by means of meta‐analysis.

A major threat to the internal validity concerns ConQAT, the tool used to detect clones. The cloning measurements obtained could be different

when using alternative tools. Additionally, Type 4 clones were outside the scope of this case study. In the future, it will be necessary to consider

semantic clones, together with the use of other tools. Moreover, the testing and generated code was excluded during the clone detection phase

without any insights into how this kind of source code can affect the cloning ratio.

Finally, in order to analyze the evolution and fluctuation of the variables used, they were measured for each release branch. However, alter-

native means of discretizing these variables could be used. It would, for example, be possible to take measures every fixed period of time, or to

consider a continuous measure by taking values for every single commit.
5.4.3 | External validity

External validity concerns the generalization of the results. In this case study, the results obtained could be generalized to open source projects in

GitHub using Java and following a release branching strategy. Since all the cases selected were coded in Java, systems written in other program-

ming languages must be considered for a broader generalization, and particularly other programming languages that do not support object orien-

tation. Additionally, in order to achieve a better generalization, it is necessary to analyze systems shared in different repositories as a part of

GitHub and even business projects that are not open source.
5.4.4 | Reliability

This aspect is concerned with the extent to which the data and the analysis are dependent on the specific researchers. If the same study is con-

ducted by other researchers, then the results should be the same since we provide a web page showing the full experimental data set (both, raw

and derived data), along with the statistical test result. The source code of all the open source projects studied can be accessed through GitHub in

order to replicate the study.
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6 | QUALITATIVE ANALYSIS AND INTERPRETATION

Apart from the quantitative analysis conducted through the case study, other qualitative aspects can be considered to get a better explanation or

reinforce insights previously extracted. In this sense, this qualitative analysis focuses on the evolution of clones across the system releases. Thus,

the research question behind this analysis is: what happen to clones from a release to the next one?

This qualitative analysis can help to verify and prove some of the hypothesized explanations we provided for some of the results obtained in

the case study. This analysis could be also useful to better understand the reasons of the different cloning evolution patterns that were distin-

guished by means of the previous quantitative analysis.
6.1 | Cloning evolution patterns

The qualitative analysis was designed to consider at least one system for each cloning evolution pattern detected before. Thus, we can distinguish:

• Out of the control: systems that present a lower cloning ratio in first releases (around 5%), and then these experiment upward trends. An

example of this pattern is Spring‐boot.

• Toward control: systems having higher cloning ratio at the beginning (around 30%) and then these present a downward trend. This might have

been owing to the fact that the developers realized there was a huge cloning ratio and attempted to reduce it in the subsequent releases. An

example of this pattern is Pig.

• Under control: systems releases presenting some peaks, but these remain stable over time without exceeding a certain threshold.

These systems could have some upward trends in first releases. However, after that, cloning ratio is stabilized around 5%. An example of this

pattern is Tika.

In summary, the three systems analyzed are Spring‐boot, Pig, and Tika. The scope of this analysis is also limited to the track of clones of size 10.

Bigger clones (size 20 code units) are less numerous, and many releases do not have clones of such a size.
6.2 | Cloning tracking analysis

It should be realized that the implementation and usage of clone tracking mechanisms to determine equivalent clones and track them

are not easy and are treated in specific research streams (Duala‐Ekoko et al, 2007,30). Although there are some tools that apparently

track clones in this way, it is extremely difficult to track actual equivalent clones between releases. A certain clone regarding the previous

release could be extended, reduced, preserved, removed, divided, merged, etc. An equivalent definition for each of these operations should

has to be carefully defined, otherwise the equivalence function could lead to wrong results. This is the main reason for which tracking

clones is not easy.

Other approaches mark equivalent clones at the line of code level. This means that lines of source code are tagged to show whether or not

they are part of a clone, and these lines are then tracked throughout the releases. This approach facilitates the clone tracking and is the one

followed in this qualitative analysis.

Following the mentioned approach, we figured out the preserved clones between releases, those new clones added, and those removed for

each release. On one hand, Figure 8 depicts the evolution of the clones throughout the. On the other hand, Figure 9 summarizes the data collected

for each system under the tracking analysis. Although Figures 8 and 2 may seem quite similar, Figure 8 shows the evolution of the absolute

number of clones in every release, while Figure 2 shows the cloning ratio that depends not only on the number of clones but also depends on

length of clones and the length of the whole system (ie, it is a relative measure). Figure 8 shows the number of clones discarded (removed inten-

tionally or not intentionally) as well as the new clones introduced in every release. These bar plots confirm the cloning evolution patterns depicted
FIGURE 8 Evolution of the preserved, removed, and added clones in Spring‐boot, Pig, and Tika



FIGURE 9 Patterns detected regarding commit size and added/removed clones. (A‐L, adding clones with large commit size; R‐S, removing clones
with small commit size)
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above. One important detail to be considered when these patterns are checked is that the volume of clones greatly differs between systems. Thus,

there are thousands of clones in Pig, while for example Tika only presents around one hundred clones.
6.3 | Behavioral patterns regarding commit size

The major finding obtained through the previous quantitative analysis is that size of commits affects the cloning ratio. One possible interpretation

of these results is that bigger commits with more additions and deletions introduce more copies of the existing codes. While a change is growing

and is not committed, the probability that someone is changing the same parts increases.44 This is especially probable if the commits become large

(see very‐large category in Figure 6) As a result, this scenario produces more merging conflicts that can be resolved by introducing further clones in

an unintentional manner (the clones supporting the same functionality in the system are unknown) or deliberately (clones are already known, but

the main goal is to achieve system stability and avoid refactoring).45

In order to confirm this, some patterns have been searched in the qualitative data collected (see Figure 9). First, relevant data were qualita-

tively denominated with a three‐Likert flag (ie, diamond for small values, triangle for medium values, and circle for large values). These flags are

statistically and independently calculated for each column and system. After that, certain patterns are searched row by row (ie, for each release)
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and annotated into the right column (or empty if no evidence for one of the target patterns). According to our previous findings and assumptions,

the patterns searched in this qualitative analysis are:

• A‐L: System's releases in which a huge number of clones are introduced (in comparison with the whole system releasing history) and the com-

mit size is large.

• A‐M: Similar to A‐M, but the commit size is medium (taking into account all the different commit sizes throughout the releases).

• R‐S: The number of removing clones is extremely high or at least higher than the number of clones added. Additionally, the size of commits on

average for such releases is small.

Figure 9 shows that A‐M (9) and A‐L (2) were clearly detected 11 times in the 36 releases. These results show a relationship between commit size

and the number of new clones introduced in a certain release. Additionally, A‐L and A‐M occurrences are similarly distributed in all the systems.

Hence, it seems not to be associated with none of the aforementioned cloning evolution patterns. This means, it happens for all the systems.

Regarding R‐S, it was detected in six releases of those analyzed. Although this number seems to be low, it should be noticed that clones are

not removed in all the releases but only in some of them. Actually, the R‐S pattern mostly happens in the two expected systems according to the

cloning evolution patterns, ie, “toward control” (Pig) and “under control” (Tika). Therefore, it can be said that smaller commit size is related in some

cases with the reduction of clones.
6.4 | Interpretation and limitations

Results obtained in this qualitative analysis help to confirm the obtained quantitate insights. The patterns searched were detected with some

exceptions, specifically in the first releases of the systems analyzed. This can be explained by means of the huge variability and randomness in first

releases in comparison with later releases when the system development can be considered as stable.

Not only were some behavioral patterns detected, but they also can be associated with the cloning evolution patterns. Thus, addition of

clones through medium and large commits happens in all the three evolutionary patterns, while removing clones through smaller commits happens

when cloning is wanted to be under or toward control, ie, cloning that is being intentionally reduced.

The main limitations for this qualitative analysis lie in the fact that it is conducted with only three systems with 39 releases in total. Never-

theless, these were selected to consider all the different evolutionary patterns we distinguished.
7 | CONCLUSIONS

Code clones impact on code quality since defects can be propagated through several copies, thus making maintainability and the understandability

of similar copies more difficult. In other cases, clones are self‐admitted, and the development continues by tracking and handling those copies.

These and other related effects are well known thanks to the considerable amount of research carried out as regards the root causes and effects

of cloning. Nevertheless, there is not much work on how certain project context factors (although not related at the beginning) can affect the clon-

ing ratio in a project.

This work presented an empirical validation consisting of a multi‐case study of six open source projects throughout 70 different releases. The

study focuses on the evolution throughout the release history of certain factors (eg, the number of developers and their participation, the average

size of commits, and the total size of the system) and how these factors impact on code clones. The conclusions, which were drawn by means of

the empirical results obtained, show that two of the factors analyzed do not affect cloning, while the size of commits has a certain impact.

Neither the number of committers and commits nor the system size had any effect on code clones. We observed that each system had

its own evolution. These results are, in some respects, aligned with those attained in other related works.13,33 Although these factors do not

have an effect on cloning, the empirical study shows different cloning evolution patterns such as “out of the control,” “toward control,” or “under

control.”

With regard to the factors that impact on code clones, the size of commits, which is measured as the average amount of additions and

deletions per commit, had a positive correlation relationship with the cloning ratio. The effect of this factor on the cloning ratio was statistically

quantified at around 57%. This means that other factors could explain the cloning ratio values, together with the size of the commits. However, we

believe that this percentage is sufficient to consider this effect. Our interpretation of this result is that larger commits can introduce more copies

of the existing codes. This tried to be confirmed through a qualitative analysis as well. The rationale may be that, while a change is increasing and is

not committed, the probability that someone is changing overlapped parts increases, thus leading to merging conflicts whose respective fixing may

unintentionally (the clone supporting the same functionality is unknown) or deliberately (with the aim of achieving system stability and deferring

refactoring efforts) introduce code clones.

After analyzing these factors, the main implication of this research, which was carried out in order to prevent code cloning, is that developers

should commit to small changes as soon as possible rather than locally saving huge changes and committing everything at once later. This result

may also help project managers to predict and prevent code cloning in open source projects.
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Despite the aforementioned conclusions of the empirical validation, there are certain threats to the validity of this work, signifying that the

following future research efforts will be necessary. First, most project will be involved in the same or similar study to achieve stronger conclusions.

Projects using different programming languages and paradigms (not only object‐oriented) will be considered, along with projects from other

repositories or even business projects that are not necessarily open source projects. In the future, the results of these cases will be contrasted

with the results obtained in this study by means of meta‐analysis. Furthermore, cloning and factor measuring will be improved by considering

other factors, such as team diversity (country, time zone, etc.) and the number of merges in the git repository. Measuring cloning in a continuous

manner (for example, for every commit) is challenging and would be a powerful means to draw stronger conclusions about the evolution of the

factors that may affect cloning.
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